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Abstract

This article analytically derives the sharp bound of the Average Treatment Effect under the monotone
instrumental variable and the monotone treatment response assumptions. While delivering the proof,
this paper also identifies the gap in the existing results for the sharp bound of arm-specific means and
provides thorough proof. The result can be extended to other inequality constraints on the outcomes
such as the conditional monotone treatment selection assumption. Despite its limited practical impor-
tance, the findings advance our theoretical understanding of how much identifying power different
monotone assumptions have.
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1 Introduction

The partial identification literature began with various shape restrictions to narrow down possible ranges
of the average treatment effect. Examples include monotone treatment response, concave monotone treat-
ment response, monotone treatment selection, and in the instrument variable settings monotone instru-
mental variable (Manski 1997; Manski and Pepper 2000). Further shape restrictions can be found in the
more recent literature (Giustinelli 2011; Twinam 2017; Kim et al. 2018). Despite these notable theoretical
advancements, there are two points to be noted. First, many analytic results are proven for arm-specific
means rather than for average treatment effects that are more of immediate interest for researchers. The
bound derived from sharp bounds for arm-specific means might not be sharp enough for average treatment
effects. Second, the proof for sharpness results is sometimes incomplete. The best way to show sharpness is
to explicitly construct a population that is compatible with the observed data, satisfies all assumptions and
achieves the stated bound, which is seldom employed in theoretical works due to cumbersome notations
and complicated logic.

This paper complements the foundational paper of Manski and Pepper (2000) by providing the sharp
bound of the Average Treatment Effect (ATE) under the monotone instrumental variable and the mono-
tone treatment response assumptions. This paper also fills in the gap of the literature by providing a
thorough proof for the sharp bound of arm-specific means in the same settings. It will be shown below
that the sharpness proof in Manski (2003) is incomplete and there is no easy fix as the monotone instru-
ment variable condition imposes a system of linear equations subject to some inequality restrictions. Using
an algorithm that guarantees the existence of solutions under the restrictions, this paper shows that any
combination of conditional expectations of potential outcomes with respect to the instrumental variable
can be simultaneously achieved as long as they do not violate the assumptions. The algorithm turns out
to be the key to the results for the ATE bounds as well since they require to construct a population out
of an arbitrary combination of conditional expectations. The sharp bound for the ATE decomposes the
two expected outcome into conditional expectations each, and applies monotone treatment response to
the pairs that share a common realized treatment.

These results easily extend to the conditional monotone treatment selection assumption. The mono-
tone instrument variable is often used in conjunction with the monotone treatment selection in empirical
analyses (Gonzalez 2005; De Haan 2011; Kreider et al. 2012). Lafférs (2013) notes the confusion in the
literature around the monotone treatment selection and the conditional monotone treatment selection in
instrumental variable settings, which have different meanings and one of which is not subsumed by the
other. The conditional monotone treatment selection states that potential outcomes are monotone in the
realized treatment conditionally on the instrument assignment. This assumption mathematically imposes
additional rank restrictions on the conditional expectations. The above lemma can be modified to ac-
commodate these additional rank restrictions, leading to sharp bounds of arm-specific means and average
treatment effects under the conditional monotone treatment selection on top of the other assumptions
previously considered.

Computational methods have become increasingly popular in the partial identification literature more
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broadly as they facilitate handling with multiple assumptions with ease (Mogstad, Santos and Torgovitsky
2018; Duarte et al. 2024). Especially, Lafférs (2013, 2019) derive the bounds for the ATE under both sets
of assumptions using linear programming approaches. The analytical results here might not offer a huge
practical contribution if the computation is not particularly costly. However, computationally derived
bounds often lack intuition in terms of why one assumption has a stronger bounding effect than another
if one goal of partial identification is to understand how different assumptions have different implications
in analyses. Moreover, approaches in Lafférs (2013, 2019) assume binary treatments or continuous treat-
ments but with linear effects, while the bounds here accommodate finite treatments and finite instruments.
This difference is substantial in partial identification because the resulting bound may not be sharp when
estimated with a subset data, unlike in point identification settings. This paper addresses a gap in our
understanding of the monotone instrument variable that has remained unresolved since the early stages
of the literature. At the end of the paper, I empirically illustrate the methods by reanalyzing Gonzalez
(2005) that studies the wage effect of language skills with the monotone instrumental variable, but with
the sharp bounds and the additional conditional monotone treatment selection assumption.

2 Theoretical Results

Each observation is drawn i.i.d from a population of ({𝑌 (𝑑, 𝑧) ∶ 𝑑 ∈ , 𝑧 ∈ }, {𝐷(𝑧) ∶ 𝑧 ∈ }, 𝑍) where
𝑌 is the outcome, 𝐷 is the treatment, and 𝑍 is the instrument. Assume  and  are discrete and their
elements are totally ordered under a relation ⪰. We only observe (𝑌𝑖(𝐷𝑖), 𝐷𝑖(𝑍𝑖), 𝑍𝑖) ≡ (𝑌𝑖, 𝐷𝑖, 𝑍𝑖) in an
infinitely large data. The goal is to find the range of 𝔼[𝑌 (𝑑)] and 𝔼[𝑌 (𝑑) − 𝑌 (𝑑′)] for given 𝑑 and 𝑑′ among
the populations that satisfy:

Assumption 1 (SUTVA). 𝑌𝑖(d, z) = 𝑌𝑖(𝑑𝑖, 𝑧𝑖) for all 𝑖 and treatment and instrument vectors d and z.

Assumption 2 (Exclusion restriction). 𝑌𝑖(𝑑, 𝑧) = 𝑌𝑖(𝑑) for all 𝑖, 𝑑 and 𝑧.

Assumption 3 (Bounded outcomes). 𝑌𝑖(𝑑) ∈ [𝑦, 𝑦] for all 𝑖 and 𝑑.

Assumption 4 (MTR: Monotone treatment response). 𝑌𝑖(𝑑) ≥ 𝑌𝑖(𝑑′) if 𝑑 ⪰ 𝑑′.

Assumption 5 (MIV: Monotone instrument variable). 𝔼[𝑌 (𝑑) |𝑍 = 𝑧] ≥ 𝔼[𝑌 (𝑑) |𝑍 = 𝑧′] for all 𝑑 if 𝑧 ⪰ 𝑧′.

Assumption 4 states that the treatment always has a nonnegative effect. Assumption 5 assumes that
the potential outcome is not mean-independent of the instrument, and the expected potential outcome
increases in the realized instrument. This is a relaxation of identifying assumptions in the modern instru-
mental variable settings. Manski and Pepper (2009) point out that there are two ways to do so. One is
keeping the exclusion restriction and imposing restrictions on the assignment process such as the mono-
tone instrumental variable. The other is to allow the instrumental variable to influence the outcome and
directly impose restrictions on the individual potential outcomes: 𝑌𝑖(𝑑, 𝑧) ≥ 𝑌𝑖(𝑑, 𝑧′) if 𝑧 ⪰ 𝑧′. I take the
former approach following the original paper (Manski and Pepper 2000).

A few auxiliary variables are defined to present the first results: 𝑚−
𝑑,𝑧 = 𝔼[𝑌 |𝐷 ≤ 𝑑, 𝑍 = 𝑧], 𝑚+

𝑑,𝑧 =
𝔼[𝑌 |𝐷 ≥ 𝑑, 𝑍 = 𝑧], 𝜋−

𝑑,𝑧 = P[𝐷 ≤ 𝑑 |𝑍 = 𝑧], 𝜋+
𝑑,𝑧 = P[𝐷 ≥ 𝑑 |𝑍 = 𝑧]. These are all point identifiable from
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the observed data. The following proposition gives the sharp bounds for the arm-specific mean, 𝔼[𝑌 (𝑑)],
and the ATE, 𝔼[𝑌 (𝑑) − 𝑌 (𝑑′)], under the above assumptions.

Proposition 1. Under Assumptions 1-5, the sharp bounds for arm-specific means and average treatment
effects are

𝔼[𝑌 (𝑑)] ∈ [𝐿𝑑 , 𝑈𝑑], 𝔼[𝑌 (𝑑) − 𝑌 (𝑑′)] ∈ [𝐿𝑑, 𝑑′ , 𝑈𝑑 − 𝐿𝑑′]

where 𝑑 ⪰ 𝑑′, and

𝑠𝑑, 𝑧 = sup
𝑧′≤𝑧

{𝑚−
𝑑,𝑧′𝜋

−
𝑑,𝑧′ + 𝑦(1 − 𝜋−

𝑑,𝑧′)},

𝑖𝑑, 𝑧 = inf
𝑧′≥𝑧

{𝑚+
𝑑,𝑧′𝜋

+
𝑑,𝑧′ + 𝑦(1 − 𝜋+

𝑑,𝑧′)},

𝐿𝑑 = ∑
𝑧
P[𝑍 = 𝑧] ⋅ 𝑠𝑑, 𝑧 ,

𝑈𝑑 = ∑
𝑧
P[𝑍 = 𝑧] ⋅ 𝑖𝑑, 𝑧 ,

𝐿𝑑, 𝑑′ = ∑
𝑧
P[𝑍 = 𝑧] ⋅max(𝑠𝑑, 𝑧 − 𝑖𝑑′, 𝑧 , 0).

Proof. We only prove the validity of the bound for arm-specific means 𝔼[𝑌 (𝑑)] here. All omitted proofs
can be found in Appendix. To avoid confusion, 𝑑 is used for potential treatments and 𝑑, 𝑑′ for the specific
treatments for which we find the bound. Define 𝑛𝑑, 𝑧 = 𝔼[𝑌 (𝑑) |𝑍 = 𝑧]. Then,

𝑛𝑑, 𝑧 = ∑
𝑒
𝔼[𝑌 (𝑑) |𝐷 = 𝑒, 𝑍 = 𝑧] ⋅ P[𝐷 = 𝑒 |𝑍]

= ∑
𝑒≻𝑑

𝔼[𝑌 (𝑑) |𝐷 = 𝑒, 𝑍 = 𝑧] ⋅ P[𝐷 = 𝑒 |𝑍] +∑
𝑒⪯𝑑

𝔼[𝑌 (𝑑) |𝐷 = 𝑒, 𝑍 = 𝑧] ⋅ P[𝐷 = 𝑒 |𝑍]

≥ 𝑦 ⋅ P[𝐷 ≻ 𝑑 |𝑍] +∑
𝑒⪯𝑑

𝔼[𝑌 (𝑒) |𝐷 = 𝑒, 𝑍 = 𝑧] ⋅ P[𝐷 = 𝑒 |𝑍]

= 𝑚−
𝑑,𝑧𝜋

−
𝑑,𝑧 + 𝑦(1 − 𝜋𝑑,𝑧).

Similarly, 𝑛𝑑, 𝑧 ≤ 𝑚+
𝑑,𝑧
𝜋+
𝑑,𝑧

+ 𝑦(1 − 𝜋+
𝑑,𝑧
). Since 𝑛𝑑, 𝑧 increases in 𝑧 by MIV, we have sup𝑧′≤𝑧{𝑚−

𝑑,𝑧′𝜋
−
𝑑,𝑧′ + 𝑦(1 −

𝜋−
𝑑,𝑧′)} ≤ 𝑛𝑑, 𝑧 ≤ inf𝑧′≥𝑧{𝑚+

𝑑,𝑧′𝜋
+
𝑑,𝑧′ + 𝑦(1 − 𝜋+

𝑑,𝑧′)}, and 𝔼[𝑌 (𝑑)] = ∑𝑧 P[𝑍 = 𝑧] ⋅ 𝑛𝑑, 𝑧 ∈ [𝐿𝑑 , 𝑈𝑑]. An observable
implication of Assumptions 1-5 is

sup
𝑧′≤𝑧

{𝑚−
𝑑,𝑧′𝜋

−
𝑑,𝑧′ + 𝑦(1 − 𝜋−

𝑑,𝑧′)} ≤ inf
𝑧′≥𝑧

{𝑚+
𝑑,𝑧′𝜋

+
𝑑,𝑧′ + 𝑦(1 − 𝜋+

𝑑,𝑧′)}. (1)

■

The bound for the arm-specific mean was first reported in Manski and Pepper (2000), although the
proof was given only later in Manski (2003, p. 146). The analytic bound for the ATE is original. Showing
the validity of the bounds is starightforward. The first part of the proof, 𝑛𝑑, 𝑧 ≥ 𝑚−

𝑑,𝑧
𝜋−
𝑑,𝑧

+ 𝑦(1 − 𝜋𝑑,𝑧), is the
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result from MTR applied conditionally on 𝑧. MIV imposes monotonicity on 𝑛𝑑, 𝑧 , hence sup and inf. The
bound somewhat mechanically synthesizes the two assumptions.

The difficulty lies in showing its sharpness. The proof in Manski (2003) says that the lower bound is
achieved if the conditional expectations are simultaneously set at their lower bound: 𝑛𝑑, 𝑧 = sup𝑧′≤𝑧{𝑚−

𝑑,𝑧′
𝜋−
𝑑,𝑧′

+

𝑦(1−𝜋−
𝑑,𝑧′

)} for all 𝑑 and 𝑧. This is unfortunately not obvious. Under MTR only, the sharpness can be shown
by setting unobserved outcomes at either the lower bound or the upper bound. However, the unobserved
outcomes cannot be always at either extreme due to the MIV conditions so they should be somewhere in
the middle for the most of the time, and it is not obvious how that can be reconciled with MTR that must
hold at the individual observation level. One might think that since only one specific group of potential
outcomes matters in the arm-specific mean case, the unobserved outcomes can be set so that only these
conditional expectations are set at their lower bounds: 𝑛𝑑, 𝑧 = sup𝑧′≤𝑧{𝑚−

𝑑,𝑧′𝜋
−
𝑑,𝑧′ + 𝑦(1 − 𝜋−

𝑑,𝑧′)} for all 𝑧.
However, this approach also requires some control over potential outcomes other than 𝑌 (𝑑) since MIV
must hold for all potential treatments 𝑑.

The following lemma addresses this problem by guaranteeing a population that simultaneously achieves
the conditional expectation conditions for all treatment assignments under MTR, provided that the given
values for conditional expectations are compatible with MTR.

Lemma 1. Assume 𝑚−
𝑑,𝑧
𝜋−
𝑑,𝑧

+ 𝑦(1 − 𝜋𝑑,𝑧) ≤ 𝑚+
𝑑,𝑧
𝜋+
𝑑,𝑧

+ 𝑦(1 − 𝜋+
𝑑,𝑧
) for all 𝑑 and 𝑧. Let 𝑛𝑑, 𝑧 be constants that

satisfy

𝑚−
𝑑,𝑧𝜋

−
𝑑,𝑧 + 𝑦(1 − 𝜋𝑑,𝑧) ≤ 𝑛𝑑, 𝑧 ≤ 𝑚+

𝑑,𝑧𝜋
+
𝑑,𝑧 + 𝑦(1 − 𝜋+

𝑑,𝑧),

and 𝑛𝑑, 𝑧 ≤ 𝑛𝑑′, 𝑧 whenever 𝑑 ⪯ 𝑑′. Then, there exists a population that satisfies Assumptions 1-4 such that
𝔼[𝑌 (𝑑) |𝑍 = 𝑧] = 𝑛𝑑, 𝑧 for all 𝑑 and 𝑧.

Lemma 1 has two conditions. The first is that the values for the conditional expectations lie within
the data-driven bound, and the second is that the values for the conditional expectation increases in the
potential treatment 𝑑. Both represent the observable implications of MTR. The lemma establishes the
sufficient and necessary condition for the possible values of the conditional expectations under MTR.
Then, we can construct a population that attains the lower and upper bound in the original proposition
by setting the conditional expectations to values that satisfy MIV. Lemma 1 justifies the aforementioned
mechanical synthesis of the two conditions in the bound for arm-specific means by separating MTR and
MIV in constructing a population. The proof proceeds by algorithmically finding conditional expectations
𝔼[𝑌 (𝑑) |𝐷 = 𝑑, 𝑍 = 𝑧] such that 𝔼[𝑌 (𝑑) |𝑍 = 𝑧] = 𝑛𝑑, 𝑧 using induction on 𝑑.

Circling back to Proposition 1, the upper bound for ATEs is the same as the upper bound constructed
from the individual bounds. Although showing its sharpness is a nontrivial task, more interesting is the
lower bound. Its validity can be checked by observing that 𝔼[𝑌 (𝑑)] and 𝔼[𝑌 (𝑑′)] can be decomposed into
conditional expectations 𝔼[𝑌 (𝑑) |𝑍], and MTR guarantees 𝔼[𝑌 (𝑑) |𝑍] ≥ 𝔼[𝑌 (𝑑′) |𝑍] for all 𝑍 . It seems
that the lower bound has not been refined in the literature to my knowledge despite the simplicity of its
derivation. When is the new bound different from the old bound max(𝐿𝑑 − 𝑈 ′

𝑑 , 0)? The two bounds differ
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whenever there exists 𝑧 such that 𝑠𝑑, 𝑧 > 𝑖𝑑′, 𝑧 , or the lower bound of the conditional expectation at 𝑑 = 𝑑,
𝔼[𝑌 (𝑑) |𝑍 = 𝑧], is greater than the upper bound of the conditional expectation at 𝑑 = 𝑑′, 𝔼[𝑌 (𝑑′) |𝑍 = 𝑧].
One necessary condition is that the inner arguments cannot be increasing over all 𝑧. If they did, then
𝑠𝑑, 𝑧 = 𝑚−

𝑑,𝑧𝜋
−
𝑑,𝑧 + 𝑦(1 − 𝜋−

𝑑,𝑧) < 𝑚+
𝑑,𝑧𝜋

+
𝑑,𝑧 + 𝑦(1 − 𝜋+

𝑑,𝑧) = 𝑖𝑑, 𝑧 . This is the same argument that MTR alone
cannot rule out the zero effect. Therefore, the lower bound is a large positive number if the individual
conditional expectations 𝔼[𝑌 (𝑑) |𝐷 = 𝑑, 𝑍 = 𝑧] are highly nonmonotonic in 𝑧, although their weighted
averages are constrained to be monotonic by MIV.

This ATE bound is also sharp. The sharpness requires some conditional expectations 𝔼[𝑌 (𝑑) |𝑍] to be
at their lower bound, others at their upper bound, and in the case of the lower bound, still others at a
random point in between. This implies that the arbitrariness of the values for conditional expectations in
Lemma 1 play a crucial role in the sharpness argument.

MIV was combined only with MTR in Manski and Pepper (2000), but the subsequent empirical liter-
ature has often employed MIV in conjunction with another assumption that was also introduced in the
same paper (Gonzalez 2005; De Haan 2011; Kreider et al. 2012). Monotone Treatment Selection (MTS) is
a relaxation of the exogenous treatment assumption and can be thought of a special case of MIV when
the treatment and the instrument concur. Formally, 𝔼[𝑌 (𝑑) |𝐷 = 𝑑] ≥ 𝔼[𝑌 (𝑑) |𝐷 = 𝐷′] for all 𝑑 if 𝑑 ⪰ 𝑑′.
This assumption states that units with a higher absolute level of potential outcomes select into higher
treatments, thus largely implying a positive selection effect.

Nevertheless, Lafférs (2013) notes the confusion around the joint use of MIV and MTR in instrumental
variable settings. The two assumptions restrict the conditional expectations 𝔼[𝑌 (𝑑) |𝐷 = 𝑑, 𝑍 = 𝑧] along
different dimensions, one on their weighted averages with respect to 𝐷 and the other on their weighted
averages with respect to 𝑍 . Lafférs (2013) points out that researchers sometimes implicitly assume that
the selection into treatment is positive after conditioning on the instrumental variable, which leads to the
following definition of conditional monotone treatment selection.

Assumption 6 (cMTS: conditional monotone treatment selection). 𝔼[𝑌 (𝑑) |𝐷 = 𝑑, 𝑍 = 𝑧] ≥ 𝔼[𝑌 (𝑑) |𝐷 =
𝑑′, 𝑍 = 𝑧] for all 𝑑 and 𝑧 if 𝑑 ⪰ 𝑑′.

Assumption 6 conceptually extends one step beyond the typical MTS but does not mathematically
subsume it. MTS is a linear combination of the conditional expectation 𝔼[𝑌 (𝑑) |𝐷 = 𝑑, 𝑍 = 𝑧] and the
conditional probability P[𝑍 = 𝑧 |𝐷 = 𝑑]. Since the conditional probability component differs across the
realized treatment 𝐷, the dominance of individual conditional expectations does not imply the dominance
of their weighted average by Simpson’s paradox. Lafférs (2013) gives an example where this assumption
can be substantively justifiable.

Since cMTS is designed to emulateMTS after conditioning on the instrumental variable, MTR and cMTS
jointly have an observable implication that mirrors that of MTR and MTS in non-instrumental variable
settings. Let 𝑚𝑑,𝑧 = 𝔼[𝑌 |𝐷 = 𝑑, 𝑍 = 𝑧], which is point identifiable from the observed data. Then, 𝑚𝑑,𝑧

increases in 𝑑 since if 𝑑 ⪰ 𝑑′, then 𝑚𝑑,𝑧 = 𝔼[𝑌 |𝐷 = 𝑑, 𝑍 = 𝑧] = 𝔼[𝑌 (𝑑) |𝐷 = 𝑑, 𝑍 = 𝑧] ≥ 𝔼[𝑌 (𝑑′) |𝐷 =
𝑑, 𝑍 = 𝑧] ≥ 𝔼[𝑌 (𝑑′) |𝐷 = 𝑑′, 𝑍 = 𝑧] = 𝑚𝑑′,𝑧 . The inequalities hold by MTR and cMTS respectively. The
monotonicity of 𝑚𝑑,𝑧 is crucial in the proof of the following proposition that provides the sharp bounds
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under MIV, MTR and cMTS.

Proposition 2. Under Assumptions 1, 2, 4-6, the sharp bounds for arm-specific means and average treatment
effects are

𝔼[𝑌 (𝑑)] ∈ [𝐿𝑑 , 𝑈𝑑], 𝔼[𝑌 (𝑑) − 𝑌 (𝑑′)] ∈ [𝐿𝑑, 𝑑′ , 𝑈𝑑 − 𝐿𝑑′]

where 𝑑 ⪰ 𝑑′, and

𝑠𝑑, 𝑧 = sup
𝑧′≤𝑧

{𝑚−
𝑑,𝑧′𝜋

−
𝑒,𝑧′ + 𝑚𝑑, 𝑧′(1 − 𝜋−

𝑑,𝑧′)},

𝑖𝑑, 𝑧 = inf
𝑧′≥𝑧

{𝑚+
𝑑,𝑧′𝜋

+
𝑒,𝑧′ + 𝑚𝑑, 𝑧′(1 − 𝜋+

𝑑,𝑧′)},

𝐿𝑑 = ∑
𝑧
P[𝑍 = 𝑧] ⋅ 𝑠𝑑, 𝑧 ,

𝑈𝑑 = ∑
𝑧
P[𝑍 = 𝑧] ⋅ 𝑖𝑑, 𝑧 ,

𝐿𝑑, 𝑑′ = ∑
𝑧
P[𝑍 = 𝑧] ⋅max(𝑠𝑑, 𝑧 − 𝑖𝑑′, 𝑧 , 0).

Proposition 2 mirrors the previous results under MTR and MIV. There are two differences. First, As-
sumption 3 is dropped because potential outcomes are now bounded by the minimum and the maximum of
𝑚𝑑,𝑧 for each 𝑧. Second, the extreme outcomes 𝑦 and 𝑦 that were in the individual upper and lower bounds
are now replaced by the observed conditional mean 𝑚𝑑, 𝑧 . This is due to cMTS. In fact, the arguments in
sup and inf functions are the sharp bound under MTR and MTS if we split the observed data by 𝑧. The
bounds thus mechanically synthesize MIV on one hand and MTR and cMTS on the other hand. This is
possible due to the following lemma that plays a similar role to Lemma 1.

Lemma 2. Assume 𝑚−
𝑑,𝑧
𝜋−
𝑑,𝑧

+ 𝑚𝑑, 𝑧(1 − 𝜋𝑑,𝑧) ≤ 𝑚+
𝑑,𝑧
𝜋+
𝑑,𝑧

+ 𝑚𝑑, 𝑧(1 − 𝜋+
𝑑,𝑧
) for all 𝑑 and 𝑧, and 𝑚𝑑,𝑧 ≥ 𝑚𝑑′,𝑧 if

𝑑 ⪰ 𝑑′. Let 𝑛𝑑, 𝑧 be constants that satisfy

𝑚−
𝑑,𝑧𝜋

−
𝑑,𝑧 + 𝑚𝑑, 𝑧(1 − 𝜋𝑑,𝑧) ≤ 𝑛𝑑, 𝑧 ≤ 𝑚+

𝑑,𝑧𝜋
+
𝑑,𝑧 + 𝑚𝑑, 𝑧(1 − 𝜋+

𝑑,𝑧),

and 𝑛𝑑, 𝑧 ≤ 𝑛𝑑′, 𝑧 whenever 𝑑 ⪯ 𝑑′. Then, there exists a population that satisfies Assumptions 1, 2, 4 and 6 such
that 𝔼[𝑌 (𝑑) |𝑍 = 𝑧] = 𝑛𝑑, 𝑧 for all 𝑑 and 𝑧.

We have another rank restriction on𝑚𝑑, 𝑧 here, but this is to ensure the minimal compatibility between
the data and the MTR and cMTS assumptions rather than to restrict the possible values of conditional
expectations. Although the proof employs a different algorithm than before as the current rank restrictions
on the conditional expectations are two-way, the proof for the proposition is structured around the lemma
in the same manner.
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3 Empirical Example

This section replicates the findings of Gonzalez (2005) that studies the wage effect of language skills for
Hispanic workers in the US. The literature struggled to disentangle the effect of language skills from the
effect of unobserved worker capability that is potentially correlated with language skills. The study sug-
gested that the Manski-style bounds can produce conservative estimates of the desired effect and proposed
using the age at which the worker arrived in the US for a monotone instrumental variable. The language
skills and the age at arrival are each broken down into five and four categories.

The above identifying assumptions map to this empirical setting as follows. Assumption 1 states that
the wage dose not depend on the treatment and instrument distribution of other individuals. Assumption 2
further restricts that the instrument cannot affect the wage independently of the language skills. Assump-
tion 1 may be violated in general equilibrium analyses. Assumption 2 may be violated if the age at arrival
affects unobserved worker capability that is not perfectly correlated with the language skills and, in turn,
the wage. Since the potential correlation between the two motivated the use of the partial identification
approach in this study, the alternative model of partial instrumental variables, monotone direct effect of
the instrumental variable, seems more suitable here.

Assumption 3 says that the wage cannot be infinitely large, and Assumption 4 rules out the possibility
that the wage decreases as the same individual has higher language skills. These assumptions seem rea-
sonable although where to set the upper bound of the wage might not be straightforward. Assumption
5 implies that the individuals who arrived the US early have higher potential outcomes than those who
arrived the US late at every potential language skill level. This potentially depends on the factors that
affect the migration decision of the families. Finally, Assumption 6 posits that for the individuals who
arrived at the US at the same age, those who have acquired higher language skills have higher potential
outcomes than those who have not at every potential language skill level. The interpretation of cMTS
is arguably easier than MTS as it conditions out the selection process in migration. Overall, the biggest
threat to identification is the violation of the exclusion restriction. I proceed under this assumption for the
comparison of the loose bounds and the sharp bounds.

The analysis uses the 1% Public Use Micro Sample (PUMS) of the 1990 US Census. The data considers
all individuals with a Hispanic origin between the age of 16 and 64. Unemployed individuals are dropped.
The outcome variable is the natural log of hourly wage, and the upper bound and the lower bound are set
at 5 and 1. The treatment is the five answer categories to the question on ability to speak English: not at
all, not well, well, very well, only English at home. The instrument is constructed from the question on the
year of birth and the year of entry in the United States, which takes four possible values: US born, arrived
as a child (0 to 11), arrived as a teenager (12 to 17), arrived as an adult (18 or older). Since the data does
not record the exact year of the entry, I take the midpoint of each two-to-four year interval to calculate
the age at arrival. Details of data construction can be found in Appendix.

Since the sample does not cover the entire population, bounds have to be estimated to make inference
at the population level. However, naive plug-in analogues that replace expectations in the bounds with
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sample means are known to be biased (Manski and Pepper 2009), and there are more principled finite-
sample bias correction methods as well as bootstrap techniques (Andrews and Shi 2013; Chernozhukov,
Lee and Rosen 2013). I abstract from this estimation problem and use the biased plug-in estimators for the
purpose of the term paper due to a lack of time. I note that this is perfectly fine for the comparison because
Gonzalez (2005) also did not correct the finite-sample bias for MIV results.

Table 1: Sharp bounds for arm-specific means and ATEs under various assumptions

Original paper MIV+MTR MIV+MTR+cMTS

Quantity UB LB UB LB UB LB

𝔼[𝑦(1)] 1.046 1.932 1.054 1.812 1.679 2.008
𝔼[𝑦(2)] 1.166 2.209 1.189 2.113 1.838 2.014
𝔼[𝑦(3)] 1.339 2.681 1.36 2.257 1.948 2.052
𝔼[𝑦(4)] 1.767 3.221 1.777 2.646 2.014 2.1
𝔼[𝑦(5)] 2.016 4.433 2.034 4.41 2.034 2.178

𝔼[𝑦(5) − 𝑦(4)] 0 1.162 0 2.633 0 0.164
𝔼[𝑦(4) − 𝑦(3)] 0 1.515 0 1.286 0 0.153
𝔼[𝑦(3) − 𝑦(2)] 0 1.882 0 1.068 0 0.215
𝔼[𝑦(2) − 𝑦(1)] 0 2.666 0 1.059 0 0.335
𝔼[𝑦(4) − 𝑦(1)] 0 2.175 0 1.593 0.007 0.421
𝔼[𝑦(5) − 𝑦(1)] 0.084 3.387 0.222 3.357 0.026 0.499

Note: Finite-sample biases are not corrected. Columns 3-6 report the sharp bounds derived in this paper.
The last two columns drops all observations with 𝑍 = 2, or those arrives as a teenager as they do not
satisfy the observable implications.

Table 1 reports the bounds under MIV and MTR in the original paper and their replicated values.
The arm-specific means are replicated closely enough. The error seems to be due to the choices made in
preprocessing as the uploaded replication file does not contain the final variables used in their analysis.
The difference in the upper bounds is harder to understand because the sharp bound can be directly derived
from the bounds for arm-specific means. The author does not describe what bound they used in the paper
for average treatment effects. Our interest is whether there is any improvement in the lower bound. The
original paper ruled out zero effect in only one ATE, and the effect was marginal. The replicated bounds
also ruled out zero effect in only one ATE. However, this is not due to the theoretical improvement in the
sharp lower bound because 0.222 is the difference between the lower bound of 𝑦(5) and the upper bound
of 𝑦(1). The improvement is not present because the individual bound for the conditional expectation
𝔼[𝑌 (𝑑) |𝐷, 𝑍] was fairly wide, ranging one to four for each expectation.

Table 2 reports the observed conditional means 𝑚𝑑, 𝑧 = 𝔼[𝑌 (𝑑) |𝐷 = 𝑑, 𝑍 = 𝑧]. As pointed out earlier,
these quantities must increase in 𝑑 if MIV, MTR nad cMTS jointly hold. Note that the expectations are
monotonic except when 𝑍 = 2. This suggests that cMTS might not hold in conjunction with the other
two assumptions in this data because the observable implications of MIV and MTR is that the derived
upper bound is larger than the derived lower bound, which the above results corroborate. The last two
columns in Table 1 reports the bounds after dropping these individuals, and the derived upper bound is
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Table 2: Observed means conditional on the treatment and the instrument

𝑍 = 1 𝑍 = 2 𝑍 = 3 𝑍 = 4

𝐷 = 1 1.679 1.647 1.646 1.556
𝐷 = 2 1.849 1.755 1.778 1.788
𝐷 = 3 1.983 1.931 1.984 1.994
𝐷 = 4 2.083 1.796 2.093 2.105
𝐷 = 5 2.166 1.539 2.212 2.236

greater than the derived lower bound for every specification. However, cMTS in this data set was not
strong enough to further reduce the lower bound from the difference between the arm-specific bounds.
The upper bound for 𝔼[𝑦(5) − 𝑦(1)] is greater under MIV and MTR than MIV, MTR and cMTS. This is
because we lost individuals with high identification power in trimming the sample. Overall, this data
shows that the sharp lower bounds derived above do not have much practical significance if the individual
conditional expectations are not tightly bounded enough.
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Proof of Lemma 1

Define the population as

𝑌 (𝑑) |𝐷 = 𝑒, 𝑍 = 𝑧 =

⎧⎪⎪⎪
⎨⎪⎪⎪⎩

𝑌𝑒, 𝑧 + 𝑤+
𝑑, 𝑒, 𝑧

(𝑦 − 𝑌𝑒, 𝑧) 𝑑 ≻ 𝑒

𝑌𝑒, 𝑧 𝑑 = 𝑒
𝑌𝑒, 𝑧 + 𝑤−

𝑑, 𝑒, 𝑧
(𝑦 − 𝑌𝑒, 𝑧) 𝑑 ≺ 𝑒.

(2)

where 𝑤+
𝑑, 𝑒, 𝑧

, 𝑤−
𝑑, 𝑒, 𝑧

∈ [0, 1], and 𝑤+
𝑑, 𝑒, 𝑧

is increasing in 𝑑 and 𝑤−
𝑑, 𝑒, 𝑧

is decreasing in 𝑑. This population
satisfies Assumptions 1-4. It suffices to show that it is possible to find weights 𝑤+

𝑑, 𝑒, 𝑧
, 𝑤−

𝑑, 𝑒, 𝑧
that satisfy the

conditional expectation condition.
Express 𝑤+

𝑑, 𝑒, 𝑧
= ∑𝑒≺𝑘⪯𝑑 𝑣

+
𝑘, 𝑒, 𝑧 and 𝑤−

𝑑, 𝑒, 𝑧
= ∑𝑑⪯𝑘≺𝑒 𝑣

−
𝑘, 𝑒, 𝑧 . Then, each 𝑣+𝑘, 𝑒, 𝑧 and 𝑣−𝑘, 𝑒, 𝑧 is non-negative

and

∑
𝑒≺𝑘

𝑣+𝑘, 𝑒, 𝑧 ≤ 1, ∑
𝑘≺𝑒

𝑣−𝑘, 𝑒, 𝑧 ≤ 1

for all 𝑒. Denote the complements of the sum of the coefficients as 𝑣−0, 𝐷, 𝑧 ≡ 1 − ∑𝑘≺𝐷 𝑣−𝑘, 𝐷, 𝑧 and 𝑣+𝑑, 𝐷, 𝑧 ≡
1 −∑𝑘≻𝐷 𝑣+𝑘, 𝐷, 𝑧 . Defining 𝔼[𝑌 |𝐷 = 𝑒, 𝑍 = 𝑧] = 𝑦𝑒, 𝑧 , we obtain

𝔼[𝑌 (𝑑) |𝐷 = 𝑒, 𝑍 = 𝑧] =

⎧⎪⎪⎪
⎨⎪⎪⎪⎩

𝑦𝑒, 𝑧 +∑𝑒≺𝑘⪯𝑑 𝑣
+
𝑘, 𝑒, 𝑧(𝑦 − 𝑦𝑒, 𝑧) 𝑑 ≻ 𝑒

𝑦𝑒, 𝑧 𝑑 = 𝑒
𝑦𝑒, 𝑧 +∑𝑑⪯𝑘≺𝑒 𝑣

−
𝑘, 𝑒, 𝑧(𝑦 − 𝑦𝑒, 𝑧) 𝑑 ≺ 𝑒

and

𝑛𝑑, 𝑧 = 𝔼[𝑦𝐷, 𝑧 + 𝕀[𝑑 ≻ 𝐷] ∑
𝐷≺𝑘⪯𝑑

𝑣+𝑘, 𝐷, 𝑧(𝑦 − 𝑦𝐷, 𝑧) + 𝕀[𝑑 ≺ 𝐷] ∑
𝑑⪯𝑘≺𝐷

𝑣−𝑘, 𝐷, 𝑧(𝑦 − 𝑦𝐷, 𝑧)
||||
𝑍 = 𝑧].

With abuse of notation, let 𝑑 = 1, , 2, ⋯ , 𝑑 and rewrite the above equation as

𝑛𝑑+1, 𝑧 − 𝑛𝑑, 𝑧 = 𝔼[𝕀[𝑑 + 1 ≻ 𝐷] ⋅ 𝑣+𝑑+1, 𝐷, 𝑧(𝑦 − 𝑦𝐷, 𝑧) + 𝕀[𝑑 ≺ 𝐷] ⋅ 𝑣−𝑑, 𝐷, 𝑧(𝑦𝐷, 𝑧 − 𝑦)
||||
𝑍 = 𝑧].

This relation holds even for 𝑑 = 0 and 𝑑 = 𝑑 if we define pseudo conditional outcomes as 𝑛0, 𝑧 = 𝑦 and
𝑛𝑑+1, 𝑧 = 𝑦. The difference can be rewritten into a matrix form:

⎛
⎜
⎜
⎜
⎜
⎝

𝑣−0, 1, 𝑧 𝑣−0, 2, 𝑧 ⋯ 𝑣−0, 𝑑, 𝑧 0 0 ⋯ 0
0 𝑣−1, 2, 𝑧 ⋯ 𝑣−1, 𝑑, 𝑧 𝑣+2, 1, 𝑧 0 ⋯ 0

⋮
0 0 ⋯ 0 𝑣+𝑑, 1, 𝑧 𝑣+𝑑, 2, 𝑧 ⋯ 𝑣+𝑑, 𝑑, 𝑧

⎞
⎟
⎟
⎟
⎟
⎠

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

𝑝1, 𝑧(𝑦1, 𝑧 − 𝑦)
⋮

𝑝𝑑,𝑧(𝑦𝑑, 𝑧 − 𝑦)
𝑝1, 𝑧(𝑦 − 𝑦1, 𝑧)

⋮
𝑝𝑑, 𝑧(𝑦 − 𝑦𝑑, 𝑧)

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=
⎛
⎜
⎜
⎝

𝑛1, 𝑧 − 𝑛0, 𝑧
⋮

𝑛𝑑+1, 𝑧 − 𝑛𝑑, 𝑧

⎞
⎟
⎟
⎠

where 𝑝𝑑, 𝑧 = P[𝐷 = 𝑑 |𝑍 = 𝑧] and each column of the coefficient matrix sums to one. We use the following
algorithm to find a solution. The elements will be filled in sequentially starting the first row.

• Step 1: Assign 𝑣−0, 1, 𝑧 = 1, and to the rest arbitrary numbers in [0, 1] so that the first equation holds.
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• Step 2: Suppose the first 𝑑 rows are filled (𝑑 < 𝑑). Assign 𝑣−
𝑑, 𝑑+1, 𝑧

= 1−∑𝑑−1
𝑘=0 𝑣𝑘, 𝑑+1, 𝑧 and to ‘the rest’

arbitrary numbers in [0, 1] so that the (𝑑 + 1)-th equation holds and the sum of each column does
not exceed one.

• Step 3: The above step would be impossible if the right hand side is smaller than the left hand side
when ‘the rest’ are all zero, or the right hand side is larger than the left hand side when ‘the rest’ are
as large as possible.

• Step 3-1: Suppose 𝑣−
𝑑, 𝑑+1, 𝑧

is too large. Name the column in which 𝑣−
𝑑, 𝑑+1, 𝑧

is as the pivot. For the
columns to the right of the pivot, reduce all elements so that the first 𝑑 elements in the pivot can
inflate to satisfy the equations. This will in turn reduce 𝑣−

𝑑, 𝑑+1, 𝑧
. The sum of each column must not

exceed one and all coefficients must remain non-negative in the process. Let min 𝑣−
𝑑, 𝑑+1, 𝑧

= 𝑣. If
𝑣 = 0, then the left hand side can be smaller than the right hand side, solved. If 𝑣 ≠ 0, this means
that all the right-side elements are zero. Summing the first 𝑑 +1 rows, the minimum of the left hand
side is

𝑑+1
∑
𝑘=1

𝑝𝑘, 𝑧(𝑦𝑘, 𝑧 − 𝑦),

which cannot be larger than the right hand side 𝑛𝑑+2, 𝑧 − 𝑛0, 𝑧 by condition. Find 𝑣−
𝑑, 𝑑+1, 𝑧

that attains
the equality with ‘the rest’ all being zero and assign.

• Step 3-2: Suppose 𝑣−
𝑑, 𝑑+1, 𝑧

is too small. Do the contrary of Step 3-1, which is to inflate all elements on
the right of the pivot, deflate the first 𝑑 elements in the pivot and inflate 𝑣−

𝑑, 𝑑+1, 𝑧
. Letmax 𝑣−

𝑑, 𝑑+1, 𝑧
= 𝑣.

If 𝑣 = 1, then if ‘the rest’ are maximally large, then summing the first 𝑑 + 1 rows, the maximum of
the left hand side is

𝑑
∑
𝑘=1

𝑝𝑘, 𝑧(𝑦𝑘, 𝑧 − 𝑦) +
𝑑
∑
𝑘=1

𝑝𝑘, 𝑧(𝑦 − 𝑦𝑘, 𝑧).

This cannot be smaller than the right hand side 𝑛𝑑+2, 𝑧 − 𝑛0, 𝑧 by condition. If 𝑣 ≠ 1, then this implies
that the sum of the columns on the right are all ones already, so we get the same maximum of the
left hand side summing the first 𝑑 + 1 rows. Find 𝑣−

𝑑, 𝑑+1, 𝑧
that attains the equality with ‘the rest’ all

being as large as possible and assign.

• Step 4: Repeat Step 2 and 3 until the second last row is filled out. Then, the column condition
automatically fills out the last row, and the equation automatically holds because the sum of all 𝑑+2
rows should be equal on both sides.
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Proof of Proposition 1

For sharpness of the lower bound, define 𝑛𝑑, 𝑧 = sup𝑧′≤𝑧{𝑚−
𝑑,𝑧′

𝜋−
𝑑,𝑧′

+ 𝑦(1 − 𝜋−
𝑑,𝑧′

)}. Since 𝑛𝑑, 𝑧 replaces less
observations with the lower bound as 𝑑 increases, 𝑛𝑑, 𝑧 increases in 𝑑 by construction, and

𝑚−
𝑑,𝑧′𝜋

−
𝑑,𝑧′ + 𝑦(1 − 𝜋−

𝑑,𝑧′)

≤ sup
𝑧′≤𝑧

{𝑚−
𝑑,𝑧′𝜋

−
𝑑,𝑧′ + 𝑦(1 − 𝜋−

𝑑,𝑧′)} = 𝑛𝑑, 𝑧

≤ inf
𝑧′≥𝑧

{𝑚+
𝑑,𝑧′𝜋

+
𝑑,𝑧′ + 𝑦(1 − 𝜋+

𝑑,𝑧′)}

≤𝑚+
𝑑,𝑧′𝜋

+
𝑑,𝑧′ + 𝑦(1 − 𝜋+

𝑑,𝑧′).

The second inequality is from expression (1). As the conditions of Lemma 1 are met, we can find a popula-
tion that satisfies 𝔼[𝑌 (𝑑) |𝑍 = 𝑧] = 𝑛𝑑, 𝑧 for all 𝑑 and 𝑧. Meanwhile, the population satisfies MIV since 𝑛𝑑, 𝑧
increases in 𝑧. The arm-specific mean recovers the lower bound. This concludes the proof. The sharpness
for the upper bound can be analogously shown.

Next, we prove the validity and sharpness of the bound for average treatment effects 𝔼[𝑌 (𝑑) − 𝑌 (𝑑′)].
Validity can be checked by observing that

𝔼[𝑌 (𝑑)] = ∑
𝑧
P[𝑍 = 𝑧] ⋅ 𝑛𝑑, 𝑧 , 𝔼[𝑌 (𝑑′)] = ∑

𝑧
P[𝑍 = 𝑧] ⋅ 𝑛𝑑′, 𝑧 ,

and MTR guarantees 𝑌 (𝑑) ≥ 𝑌 (𝑑′) in each observation, thus 𝑛𝑑, 𝑧 ≥ 𝑛𝑑′ 𝑧 . For sharpness, first consider the
upper bound. Define

𝑛𝑑, 𝑧 =

{
sup𝑧′≤𝑧{𝑚−

𝑑,𝑧′
𝜋−
𝑑,𝑧′

+ 𝑦(1 − 𝜋−
𝑑,𝑧′

)} 𝑑 ⪯ 𝑑′

inf𝑧′≥𝑧{𝑚+
𝑑,𝑧′

𝜋+
𝑑,𝑧′

+ 𝑦(1 − 𝜋+
𝑑,𝑧′

)} 𝑑 ≻ 𝑑′.

We can find a population that satisfies 𝔼[𝑌 (𝑑) |𝑍 = 𝑧] = 𝑛𝑑, 𝑧 for all 𝑑 and 𝑧 since 𝑛𝑑, 𝑧 is increasing in 𝑑
and 𝑛𝑑, 𝑧 satisfies the bound in Lemma 1, of which the proof is identical to the arm-specific mean case. The
monotonicity around 𝑑 = 𝑑 is guaranteed by

sup
𝑧′≤𝑧

{𝑚−
𝑑,𝑧′𝜋

−
𝑑,𝑧′ + 𝑦(1 − 𝜋−

𝑑,𝑧′)} ≤ sup
𝑧′≤𝑧

{𝑚−
𝑑,𝑧′𝜋

−
𝑑,𝑧′ + 𝑦(1 − 𝜋−

𝑑,𝑧′)}

≤ inf
𝑧′≥𝑧

{𝑚+
𝑑,𝑧′𝜋

+
𝑑,𝑧′ + 𝑦(1 − 𝜋+

𝑑,𝑧′)}

for any 𝑑′ ≺ 𝑑. B* andMTR thus follow. MIV holds by the monotocinity of 𝑛𝑑, 𝑧 in 𝑧. Finally, the population
attains the upper bound of the ATE.

For the lower bound, with auxiliary variables defined for fixed 𝑑, 𝑑′,

𝛼𝑑′, 𝑧 = inf
𝑧′≥𝑧

{𝑚+
𝑑′,𝑧′𝜋

+
𝑑′,𝑧′ + 𝑦(1 − 𝜋+

𝑑′,𝑧′)}, 𝛼𝑑, 𝑧 = sup
𝑧′≤𝑧

{𝑚−
𝑑,𝑧′𝜋

−
𝑑,𝑧′ + 𝑦(1 − 𝜋−

𝑑,𝑧′)},

define

𝑛𝑑′, 𝑧 = 𝛼𝑑′, 𝑧 , 𝑛𝑑, 𝑧 = 𝛼𝑑, 𝑧 (𝛼𝑑′, 𝑧 ≤ 𝛼𝑑, 𝑧)
𝑛𝑑′, 𝑧 = 𝑛𝑑, 𝑧 = 𝛼𝑑′, 𝑧 (𝛼𝑑′, 𝑧 > 𝛼𝑑, 𝑧)
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and the rest of 𝑛𝑑, 𝑧 as

𝑛𝑑, 𝑧 =

⎧⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎩

sup𝑧′≤𝑧{𝑚−
𝑑,𝑧′

𝜋−
𝑑,𝑧′

+ 𝑦(1 − 𝜋−
𝑑,𝑧′

)} 𝑑 ≺ 𝑑′

min[max[sup𝑧′≤𝑧{𝑚−
𝑑,𝑧′

𝜋−
𝑑,𝑧′

+ 𝑦(1 − 𝜋−
𝑑,𝑧′

)}, 𝑛𝑑′, 𝑧], 𝑛𝑑, 𝑧] 𝑑′ ≺ 𝑑 ≺ 𝑑

inf𝑧′≥𝑧{𝑚+
𝑑,𝑧′

𝜋+
𝑑,𝑧′

+ 𝑦(1 − 𝜋+
𝑑,𝑧′

)} 𝑑 ≻ 𝑑.

First, we show that 𝑛𝑑′, 𝑧 ≤ 𝑛𝑑, 𝑧 and 𝑛𝑑′, 𝑧 and 𝑛𝑑, 𝑧 are increasing in 𝑧. The first inequality holds by
definition. For the second inequality, note that 𝛼𝑑′, 𝑧 and 𝛼𝑑, 𝑧 increase in 𝑧. Therefore, 𝑛𝑑′, 𝑧 < 𝑛𝑑′, 𝑧′ and
𝑛𝑑, 𝑧 < 𝑛𝑑, 𝑧′ if the order of the alphas is the same under 𝑧 and 𝑧′ (𝑧 < 𝑧′). Suppose 𝛼𝑑′, 𝑧 ≤ 𝛼𝑑, 𝑧 and
𝛼𝑑′, 𝑧 > 𝛼𝑑, 𝑧 . Then, 𝑛𝑑′, 𝑧 = 𝛼𝑑′, 𝑧 ≤ 𝛼𝑑′, 𝑧′ = 𝑛𝑑′, 𝑧′ and 𝑛𝑑, 𝑧 = 𝛼𝑑, 𝑧 < 𝛼𝑑, 𝑧′ < 𝛼𝑑, 𝑧′ = 𝑛𝑑′, 𝑧 . The case is
analogous when 𝛼𝑑′, 𝑧 > 𝛼𝑑, 𝑧 and 𝛼𝑑′, 𝑧 ≤ 𝛼𝑑, 𝑧 .

Next, we show that the entire sequence {𝑛𝑑, 𝑧} increases in 𝑑. It increases in each interval because sup
and inf increase in 𝑑. On 𝑑 = 𝑑′−,

𝑛𝑑′, 𝑧 = inf
𝑧′≥𝑧

{𝑚+
𝑑′,𝑧′𝜋

+
𝑒,𝑧′ + 𝑦(1 − 𝜋+

𝑑′,𝑧′)}

≥ inf
𝑧′≥𝑧

{𝑚+
𝑑,𝑧′𝜋

+
𝑒,𝑧′ + 𝑦(1 − 𝜋+

𝑑,𝑧′)}

≥ sup
𝑧′≤𝑧

{𝑚−
𝑑,𝑧′𝜋

−
𝑒,𝑧′ + 𝑦(1 − 𝜋−

𝑑,𝑧′)},

and on 𝑑 = 𝑑+,

𝑛𝑑, 𝑧 ≤ inf
𝑧′≥𝑧

{𝑚+
𝑑′,𝑧′𝜋

+
𝑑′,𝑧′ + 𝑦(1 − 𝜋+

𝑑′,𝑧′)} ≤ inf
𝑧′≥𝑧

{𝑚+
𝑑,𝑧′𝜋

+
𝑑,𝑧′ + 𝑦(1 − 𝜋+

𝑒𝑑𝑧′)}.

On 𝑑 = 𝑑′+ and 𝑑 = 𝑑−, the monotonicity is due to the definition.
𝑛𝑑, 𝑧 also satisfy the bound in Lemma 1. 𝑑 ≺ 𝑑′ and 𝑑 ≻ 𝑑 are identical to the arm-specific mean case.

For 𝑑′ ≺ 𝑑 ≺ 𝑑, since 𝑛𝑑, 𝑧 ≥ 𝛼𝑑, 𝑧 ≥ sup𝑧′≤𝑧{𝑚−
𝑑,𝑧𝜋

−
𝑑,𝑧 + 𝑦(1 − 𝜋−

𝑑,𝑧)},

𝑛𝑑, 𝑧 ≥ min [ sup𝑧′≤𝑧
{𝑚−

𝑑,𝑧′𝜋
−
𝑑,𝑧′ + 𝑦(1 − 𝜋−

𝑑,𝑧′)}, sup𝑧′≤𝑧
{𝑚−

𝑑,𝑧𝜋
−
𝑑,𝑧 + 𝑦(1 − 𝜋−

𝑑,𝑧)}]

= sup
𝑧′≤𝑧

{𝑚−
𝑑,𝑧′𝜋

−
𝑑,𝑧′ + 𝑦(1 − 𝜋−

𝑑,𝑧′)}

≥ 𝑚−
𝑑,𝑧𝜋

−
𝑑,𝑧 + 𝑦(1 − 𝜋−

𝑑,𝑧).

The other side can be analogously shown. By Lemma 1, we can find a population that satisfies 𝔼[𝑌 (𝑑) |𝑍 =
𝑧] = 𝑛𝑑, 𝑧 for all 𝑑 and 𝑧. This population also satisfies MIV because all arguments in the definition of 𝑛𝑑, 𝑧
increase in 𝑧. Finally, it attains the lower bound.
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Proof of Lemma 2

For any numbers 𝑦𝑑, 𝑑, 𝑧 ∈ [𝑦, 𝑦] (𝑑 ≠ 𝑑), we can always find a population that satisfies 𝑦𝑑, 𝑑, 𝑧 = 𝔼[𝑌 (𝑑) |𝐷 =
𝑑, 𝑍 = 𝑧] simultaneously for all (𝑑, 𝑑, 𝑧) by shrinking observed outcomes 𝑌 (𝑑) |𝐷 = 𝑑, 𝑍 = 𝑧 towards
either 𝑦 or 𝑦 similarly as in equation (2). It suffices to show that there exist conditional expectations 𝑦𝑑, 𝑑, 𝑧
that are (i) compatible with data: 𝑦𝑑, 𝑑, 𝑧 = 𝔼[𝑌 |𝐷 = 𝑑, 𝑍 = 𝑧] = 𝑚𝑑, 𝑧 , (ii) achieve the overall conditional
expectation: 𝔼[𝑦𝑑, 𝐷, 𝑧 |𝑍 = 𝑧] = 𝑛𝑑, 𝑧 , and (iii) increase in 𝑑 and 𝑑 conditionally on 𝑧.

With abuse of notation, express the overall conditional expectation conditions in a matrix form:

⎛
⎜
⎜
⎜
⎜
⎝

𝑦1, 1, 𝑧 𝑦1, 2, 𝑧 ⋯ 𝑦1, 𝑑, 𝑧
𝑦2, 1, 𝑧 𝑦2, 2, 𝑧 ⋯ 𝑦2, 𝑑, 𝑧

⋯
𝑦𝑑, 1, 𝑧 𝑦𝑑, 2, 𝑧 ⋯ 𝑦𝑑, 𝑑, 𝑧

⎞
⎟
⎟
⎟
⎟
⎠

⎛
⎜
⎜
⎜
⎜
⎝

𝑝1, 𝑧
𝑝2, 𝑧
⋮

𝑝𝑑, 𝑧

⎞
⎟
⎟
⎟
⎟
⎠

=

⎛
⎜
⎜
⎜
⎜
⎝

𝑛1, 𝑧
𝑛2, 𝑧
⋮

𝑛𝑑, 𝑧

⎞
⎟
⎟
⎟
⎟
⎠

where 𝑝𝑑, 𝑧 = P[𝐷 = 𝑑 |𝑍 = 𝑧]. Compatibility fixes the diagonal terms of the coefficient matrix, and MTR
and cMTS constraints the horizontal and vertical order relationship of the coefficients. We will find a
similar algorithmic solution. The off-diagonal elements will be filled in sequentially starting the first row.

• Step 1: Assign to the first row arbitrary numbers so that the first equation holds.

• Step 2: Suppose the first 𝑑 rows are filled (𝑑 < 𝑑). The next row can be filled if the (𝑑 + 1)th element
is at its upper bound, i.e., 𝑦𝑑, 𝑑+1, 𝑧 = 𝑦𝑑+1, 𝑑+1, 𝑧 , or the first 𝑑 elements of the 𝑑th row are at their
lower bound and the rest of them are smaller than 𝑦𝑑+1, 𝑑+1, 𝑧 , i.e., 𝑦𝑑, 𝑘, 𝑧 = 𝑦𝑘, 𝑘, 𝑧 for all 𝑘 ≤ 𝑑 and
𝑦𝑑, 𝑘, 𝑧 < 𝑦𝑑+1, 𝑑+1, 𝑧 for all 𝑘 > 𝑑. Let us call this condition (*). The crucial key is max 𝑦𝑑, 𝑑+1, 𝑧 . We will
see that if the 𝑑th row increases to the right of 𝑦𝑑, 𝑑+1, 𝑧 , or 𝑦𝑑, 𝑘, 𝑧 > 𝑦𝑑, 𝑑+1, 𝑧 for some 𝑘 > 𝑑 + 1, then
𝑦𝑑, 𝑑+1, 𝑧 is either not maximized or is already at 𝑦𝑑+1, 𝑑+1, 𝑧 .

• Step 2-1: Assume that the 𝑑th row increases to the right of 𝑦𝑑, 𝑑+1, 𝑧 . Find the smallest 𝑘 such that
𝑦𝑑, 𝑘, 𝑧 > 𝑦𝑑, 𝑘−1, 𝑧 . Since 𝑦𝑑, 𝑘−1, 𝑧 ≥ 𝑦𝑑−1, 𝑘−1, 𝑧 , at least one of 𝑦𝑑, 𝑘, 𝑧 > 𝑦𝑑−1, 𝑘, 𝑧 and 𝑦𝑑−1, 𝑘, 𝑧 > 𝑦𝑑−1, 𝑘−1, 𝑧
must be true. If 𝑦𝑑, 𝑘, 𝑧 > 𝑦𝑑−1, 𝑘, 𝑧 , then we can infinitesimally increase (𝑦𝑑, 𝑑+1, 𝑧 , ⋯ , 𝑦𝑑, 𝑘−1, 𝑧) and
infinitesimally decrease 𝑦𝑑, 𝑘, 𝑧 without violating the order conditions, so 𝑦𝑑, 𝑑+1, 𝑧 has not been max-
imized. If 𝑦𝑑, 𝑘−1, 𝑧 > 𝑦𝑑−1, 𝑘−1, 𝑧 , then repeat the process until one finds some 𝑑 such that 𝑦𝑑, 𝑘, 𝑧 >
𝑦𝑑−1, 𝑘, 𝑧 , or 𝑦𝑑, 𝑘, 𝑧 > 𝑦𝑑, 𝑘−1, 𝑧 for all 𝑑. In the first case, we can infinitesimally increase (𝑦𝑑, 𝑑+1, 𝑧 , ⋯ , 𝑦𝑑, 𝑘−1, 𝑧)
and infinitesimally decrease 𝑦𝑑, 𝑘, 𝑧 for all 𝑑 ≤ 𝑑 ≤ 𝑑. In the second case, we can infinitesimally in-
crease (𝑦𝑑, 𝑑+1, 𝑧 , ⋯ , 𝑦𝑑, 𝑘−1, 𝑧) and infinitesimally decrease 𝑦𝑑, 𝑘, 𝑧 for all 𝑑. The increasing and decreas-
ing margins are common for all corresponding 𝑑 due to the common weights 𝑝𝑑, 𝑧 . Since we have
𝑦𝑑, 𝑑+1, 𝑧 = ⋯ = 𝑦𝑑, 𝑘−1, 𝑧 , this adjustment is always possible as long as 𝑦𝑑, 𝑑+1, 𝑧 < 𝑦𝑑+1, 𝑑+1, 𝑧 .

• Step 3: Repeat Step 2-1 until we have either 𝑦𝑑, 𝑑+1, 𝑧 = 𝑦𝑑+1, 𝑑+1, 𝑧 or 𝑦𝑑, 𝑑+1, 𝑧 = ⋯ = 𝑦𝑑, 𝑑, 𝑧 . If
𝑦𝑑, 𝑑+1, 𝑧 = 𝑦𝑑+1, 𝑑+1, 𝑧 , then move onto the next row. If 𝑦𝑑, 𝑑+1, 𝑧 = ⋯ = 𝑦𝑑, 𝑑, 𝑧 < 𝑦𝑑+1, 𝑑+1, 𝑧 , then
shrink all below-diagonal elements towards their lower bounds and inflate all above-diagonal ele-
ments towards their upper bounds. First, try replacing all below-diagonal elements 𝑦𝑑, 𝑘, 𝑧 with 𝑦𝑘, 𝑘, 𝑧
and all above-diagonal elements 𝑦𝑑, 𝑘, 𝑧 with 𝑦𝑑, 𝑘, 𝑧+ 𝜀𝑑 where 𝜀𝑑 are constants that hold the equations
true. If 𝑦𝑑, 𝑘, 𝑧 + 𝜀𝑑 > 𝑦𝑑+1, 𝑑+1, 𝑧 , then replace below-diagonal elements with 𝑦𝑑, 𝑘, 𝑧 + 𝑤(𝑦𝑑, 𝑘, 𝑧 − 𝑦𝑘, 𝑘, 𝑧)
for some common weight 𝑤 ∈ (0, 1] so that 𝑦𝑑, 𝑘, 𝑧 + 𝜀𝑑 = 𝑦𝑑+1, 𝑑+1, 𝑧 . Note that 𝜀𝑑 is increasing in 𝑑 in
both cases since we replace less below-diagonal elements in higher rows and the margin by which
the weighted sum of the below-diagonal elements decrease is increasing in the row number. This
shows that the transformation preserves the vertical rank of elements. It also preserves the hori-
zontal rank since below-diagonal elements shrink by the same proportion where the two endpoints
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of the shrinkage, 𝑦𝑑, 𝑘, 𝑧 and 𝑦𝑘, 𝑘, 𝑧 , horizontally increase, and above-diagonal elements inflate by the
same margin. Therefore, we have condition (*) and the (𝑑 + 1)th row can be filled in.

Proof of Proposition 2

The proof generally follows that of Proposition 1. We first prove the validity and sharpness of the bound
for arm-specific means 𝔼[𝑌 (𝑑)]. For validity, define 𝑛𝑑, 𝑧 = 𝔼[𝑌 (𝑑) |𝑍 = 𝑧]. Then,

𝑛𝑑, 𝑧 = ∑
𝑒
𝔼[𝑌 (𝑑) |𝐷 = 𝑒, 𝑍 = 𝑧] ⋅ P[𝐷 = 𝑒 |𝑍]

= ∑
𝑒≻𝑑

𝔼[𝑌 (𝑑) |𝐷 = 𝑒, 𝑍 = 𝑧] ⋅ P[𝐷 = 𝑒 |𝑍] +∑
𝑒⪯𝑑

𝔼[𝑌 (𝑑) |𝐷 = 𝑒, 𝑍 = 𝑧] ⋅ P[𝐷 = 𝑒 |𝑍]

≥ ∑
𝑒≻𝑑

𝔼[𝑌 (𝑑) |𝐷 = 𝑑, 𝑍 = 𝑧] ⋅ P[𝐷 = 𝑒 |𝑍] +∑
𝑒⪯𝑑

𝔼[𝑌 (𝑒) |𝐷 = 𝑒, 𝑍 = 𝑧] ⋅ P[𝐷 = 𝑒 |𝑍]

= 𝑚−
𝑑,𝑧𝜋

−
𝑑,𝑧 + 𝑚𝑑,𝑧(1 − 𝜋𝑑,𝑧).

Similarly, 𝑛𝑑, 𝑧 ≤ 𝑚+
𝑑,𝑧
𝜋+
𝑑,𝑧
+𝑚𝑑,𝑧(1−𝜋

+
𝑑,𝑧
). MIV implies that 𝑛𝑑, 𝑧 increases in 𝑧. Therefore, sup𝑧′≤𝑧{𝑚−

𝑑,𝑧′𝜋
−
𝑑,𝑧′+

𝑚𝑑,𝑧′(1 − 𝜋−
𝑑,𝑧′)} ≤ 𝑛𝑑, 𝑧 ≤ inf𝑧′≥𝑧{𝑚+

𝑑,𝑧′𝜋
+
𝑑,𝑧′ + 𝑚𝑑,𝑧′(1 − 𝜋+

𝑑,𝑧′)}, and 𝔼[𝑌 (𝑑)] = ∑𝑧 P[𝑍 = 𝑧] ⋅ 𝑛𝑑, 𝑧 ∈ [𝐿𝑑 , 𝑈𝑑].
An implication is

sup
𝑧′≤𝑧

{𝑚−
𝑑,𝑧′𝜋

−
𝑑,𝑧′ + 𝑚𝑑,𝑧′(1 − 𝜋−

𝑑,𝑧′)} ≤ inf
𝑧′≥𝑧

{𝑚+
𝑑,𝑧′𝜋

+
𝑑,𝑧′ + 𝑚𝑑,𝑧′(1 − 𝜋+

𝑑,𝑧′)}. (3)

For sharpness of the lower bound, define 𝑛𝑑, 𝑧 = sup𝑧′≤𝑧{𝑚−
𝑑,𝑧′

𝜋−
𝑑,𝑧′

+ 𝑚𝑑, 𝑧′(1 − 𝜋−
𝑑,𝑧′

)}. 𝑛𝑑, 𝑧 increases in 𝑑

since 𝑛𝑑, 𝑧 replaces less observations with the respective lower bound 𝑚𝑑, 𝑧′ as 𝑑 increases, and the lower
bound itself increases in 𝑑 as well, which must be true under MRT and cMTS. Furthermore,

𝑚−
𝑑,𝑧′𝜋

−
𝑑,𝑧′ + 𝑚𝑑,𝑧(1 − 𝜋−

𝑑,𝑧′)

≤ sup
𝑧′≤𝑧

{𝑚−
𝑑,𝑧′𝜋

−
𝑑,𝑧′ + 𝑚𝑑,𝑧′(1 − 𝜋−

𝑑,𝑧′)} = 𝑛𝑑, 𝑧

≤ inf
𝑧′≥𝑧

{𝑚+
𝑑,𝑧′𝜋

+
𝑑,𝑧′ + 𝑚𝑑,𝑧′(1 − 𝜋+

𝑑,𝑧′)}

≤𝑚+
𝑑,𝑧′𝜋

+
𝑑,𝑧′ + 𝑚𝑑,𝑧(1 − 𝜋+

𝑑,𝑧′).

The second inequality is from expression (3), which is again from the fact that the true joint data distribu-
tion satisfies MTR and MIV. As the conditions of Lemma 2 are met, we can find a population that satisfies
𝔼[𝑌 (𝑑) |𝑍 = 𝑧] = 𝑛𝑑, 𝑧 for all 𝑑 and 𝑧. Meanwhile, the population satisfies MIV since 𝑛𝑑, 𝑧 increases in 𝑧.
The arm-specific mean recovers the lower bound. This concludes the proof. The sharpness for the upper
bound can be analogously shown.

Next, we prove the validity and sharpness of the bound for average treatment effects 𝔼[𝑌 (𝑑) − 𝑌 (𝑑′)].
The derivation of validity is exactly same as in Proposition 1. For sharpenss, note that the above sharpness
proof for arm-specific means replaces𝑚𝑒, 𝑧 for 𝑦 and 𝑦 in the proof of Proposition 1. We can do the same for
the sharpness of the average treatment effect bounds. Formally, the sharpness argument in Proposition 1
depends on themonotonicity of𝑚−

𝑑,𝑧
𝜋−
𝑑,𝑧
+𝑦(1−𝜋−

𝑑,𝑧
) and𝑚+

𝑑,𝑧
𝜋+
𝑑,𝑧
+𝑦(1−𝜋+

𝑑,𝑧
)with respect to 𝑑. If we replace

themwith𝑚−
𝑑,𝑧
𝜋−
𝑑,𝑧
+𝑚𝑑,𝑧(1−𝜋

−
𝑑,𝑧
) and𝑚+

𝑑,𝑧
𝜋+
𝑑,𝑧
+𝑚𝑑,𝑧(1−𝜋

+
𝑑,𝑧
), which are also increasing in 𝑑, the construction

of 𝑛𝑑, 𝑧 will be still valid. Validity means that (i) 𝑛𝑑, 𝑧 increases in 𝑧, and (ii) they satisfy the conditions for
Lemma 2. Lemma 2 then guarantees the existence of a population that satisfies 𝔼[𝑌 (𝑑) |𝑍 = 𝑧] = 𝑛𝑑, 𝑧 and
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Assumptions 1, 2, 4 and 6. The population also satisfies Assumption 5 by construction of 𝑛𝑑, 𝑧 . Finally, it
achieves the bounds for the average treatment effect.

Data construction

The log hourly wagewas calculated as the natural log of earnings (yearly salary) divided by weeks (weeks
worked) and hours (usual hours worked per week).
Year of arrival records one of the following choices: 0. 1987 to 1990; 1. 1985 to 1986; 2. 1982 to 1984; 3.
1980 to 1981; 4. 1975 to 1979; 5. 1970 to 1974; 6. 1965 to 1969; 7. 1960 to 1964; 8. 1950 to 1959; 9. Before
1950; 10. Born in the U.S. The midpoint for 9 was taken at 1945.5 considering the midpoint of choice 8.
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